
Stephen Checkoway

Programming Abstractions
Lecture 17: MiniScheme Introduction and grammars

Project overview

In the next few homeworks, you'll write a small Scheme interpreter

The project has two primary functions

‣ (parse exp) creates a tree structure that represents the expression exp

‣ (eval-exp tree environment) evaluates the given expression tree

within the given environment and returns its value

We need a way to represent environments and we need some way to
manipulate them

Environments

Environments are used repeatedly in eval-exp to look up the value bound to a
symbol

There are two operations we need with environments

The first is we need to look up the value bound to a symbol; e.g., 
(let ([x 3])  
 (let ([x 4])  
 (+ x 5)))  

should return 9 since the innermost binding of x is 4

Environments

Second, we need to create new environments by extending existing ones 
(let ([x 3])  
 (+ (let ([x 10])  
 (* 2 x))  
 x))  
evaluates to 23

‣ If E0 is the top-level environment, then the first let extends E0 with a binding
of x to 3

‣ If E1 is the new environment, we write E1 = E0[x ! 3]

‣ The second let creates a new environment E2 = E1[x ! 10]

‣ The (* 2 x) is evaluated using E2

‣ The final x is evaluated using E1

Let E0 be an environment with x bound to 10 and y bound to 23.

Let E1 = E0[x ! 8, z ! 0]

What is the result of looking up x in E0 and E1?

A. E0: 10  
E1: 10

B. E0: 8 
E1: 8

C. E0: 10  

E1: 8

D. E0: 8 
E1: 10

E. E1 can't exist because z isn't
bound in E0

5

Let E0 be an environment with x bound to 10 and y bound to 23.

Let E1 = E0[x ! 8, z ! 0]

What is the result of looking up y in E0 and E1?

A. E0: 23  
E1: 23

B. E0: 23  
E1: error: y isn't bound in E1

C. It's an error in both because since y isn't bound in E1, it's not bound in

E0 any longer

D. None of the above

6

Let E0 be an environment with x bound to 10 and y bound to 23.

Let E1 = E0[x ! 8, z ! 0]

What is the result of looking up z in E0 and E1?

A. E0: 0 
E1: 0

B. E0: error: z isn't bound in E0  
E1: 0

C. None of the above

7

Extending environments

There are only two places where an environment is extended

Extending environments
Procedure call

The first is a procedure call  
(exp0 exp1 … expn)

exp0 should evaluate to a closure with three parts

‣ its parameter list;

‣ its body; and

‣ the environment in which it was created, i.e., the environment at the time the
(λ …) that created the closure was evaluated

The other expressions are the arguments

The closure's environment needs to be extended with the parameters bound to
the arguments

Extending environments
Procedure call

For example imagine the parameter list was '(x y z) and the arguments
evaluated to 2, 8, and '(1 2)

If E is the closure's environment, then the closure's body should be evaluated
with the environment  

E[x ! 2, y ! 8, z ! '(1 2)]

Extending environments
Let expressions

The other situation where we extend an environment is a let expression

Consider 
(let ([x (+ 3 4)]  
 [y 5]  
 [z (foo 8)])  
 body)

We have three symbols x, y, and z and three values, 7, 5, and whatever the
result of (foo 8) is, let's say it's 12

If E is the environment of the whole let expression then the body should be

evaluated in the environment E[x ! 7, y ! 5, z ! 12]

Extending environments

In both cases we have

‣ A list of symbols

‣ A list of values

‣ A previous environment we're extending

This suggests a way to make an environment data type as a struct:

(struct env (syms vals previous) #:transparent)

Environment data type

Constructor for extending an environment  
(env list-of-syms list-of-vals previous-env)

The top-level environment doesn't have a previous environment so let's model it
as extending an empty environment  
(define empty-env null)  
(define empty-env? null?)

The top-level environment can now be  
(define top-level-env  
 (env list-of-top-level-syms  
 list-of-top-level-vals  
 empty-env))

Provided procedures

; Extended environment recognizer.

(env? e)

; Accessors

(env-syms e)

(env-vals e)

(env-previous e)

Looking up a binding
(env-lookup environment symbol)

Looking up x in an environment has two cases

If the environment is empty, then we know x isn't bound there so it's an error

Otherwise we look in the list of symbols of an extended environment

‣ If the symbol x appears in the list, then great, we have the value

‣ If the symbol x doesn't appear, then we lookup x in the previous environment

The main task of this first MiniScheme homework is to write env-lookup

A quick introduction to grammars

Grammars

A grammar for a language is a (mathematical) tool for specifying which words
over the alphabet belong to the language

Grammars are often used to determine the meaning of words in the language

Grammars are very old, dating back to at least the Indian linguist Yāska (7th–5th
century BCE)

Grammars, slightly more formally

A grammar is a set of rules that describe how to generate a string

Grammar have three basic components

‣ A set of variables or nonterminals which expand into strings

‣ A set of terminal symbols from which the final word is to be constructed

‣ A set of production rules which describe how a nonterminal can be
expanded

Example: Variables = {S, A}; terminals = {x, z}  
S → xSx  

S → A  

A → zA  

A → z

Grammars derive strings

S → xSx  

S → A  

A → zA  

A → z

To drive a string from a grammar

‣ Start with the start variable (the top-most one in the rules unless specified
otherwise) as the current string

‣ While the current string contains variables, select one (often the left-most) and
replace it one of the right hand sides of a rule whose left hand side is the
variable

E.g.,: S ⇒ xSx ⇒ xxSxx ⇒ xxAxx ⇒ xxzAxx ⇒ xxzzxx

(Group clicker)

Given the grammar

S → AS 
S → A  

A → xAx  

A → yAy  

A → z

derive the string yxzxyz

A. Select A when your group has finished

20

Simple example: arithmetic

EXP → EXP + EXP 

EXP → EXP * EXP 

EXP → (EXP)  
EXP → NUM 

NUM → D NUM 
NUM → D 
D → 0  

D → 1  

 ⋮ 

D → 9  
Nonterminals: EXP, NUM, D 
Terminals: +, *, (,), 0, 1, …, 9

Starting with EXP we can derive
strings like

‣ 0

‣ 10 + 82 * 15

‣ (103 + (27 * 8)) * (6 + 9)

We cannot derive strings like

‣ 3 * + 5

‣ (3 + 8

‣ +

‣ *  

This grammar is ambiguous
There are multiple ways to generate the string 1 * 5 + 8

EXP ⇒ EXP + EXP 

 ⇒ EXP * EXP + EXP 

 ⇒ NUM * EXP + EXP 

 ⇒ D * EXP + EXP 

 ⇒ 1 * EXP + EXP 

 ⇒ 1 * NUM + EXP 

 ⇒ 1 * D + EXP 

 ⇒ 1 * 5 + EXP 

 ⋮ 

 ⇒ 1 * 5 + 8

EXP ⇒ EXP * EXP 

 ⇒ NUM * EXP 

 ⇒ D * EXP 

 ⇒ 1 * EXP 

 ⇒ 1 * EXP + EXP 

 ⇒ 1 * NUM + EXP 

 ⇒ 1 * D + EXP 

 ⇒ 1 * 5 + EXP 

 ⋮ 

 ⇒ 1 * 5 + 8

Unambiguous grammars

Sometimes, we can design a better grammar which is not ambiguous (but not
always!)

This can let us give meaning to strings

E.g., 1 * 5 + 8 should really mean (1 * 5) + 8 and not 1 * (5 + 8)

A better grammar for arithmetic

EXP → EXP + TERM 

EXP → TERM 

TERM → TERM * FACTOR 

TERM → FACTOR 

FACTOR → (EXP)  
FACTOR → NUM 
NUM → D NUM 
D → 0  
D → 1  

 ⋮ 

D → 9  

Compact form:

EXP → EXP + TERM | TERM 

TERM → TERM * FACTOR | FACTOR  

FACTOR → (EXP) | NUM 
NUM → D NUM  
D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Parse trees

Grammars give rise to parsers which can parse strings into trees

With good choices of grammars, we can derive meaning from the parse tree

Parse tree for 3 + 4 * 50

EXP ⇒ EXP + TERM

⇒ TERM + TERM

⇒ FACTOR + TERM

⇒ 3 + TERM

⇒ 3 + TERM * FACTOR

⇒ 3 + FACTOR * FACTOR

⇒ 3 + 4 * FACTOR

⇒ 3 + 4 * 50

(I omitted the rules for NUM and D)

E

E + T

T

F

3

T * F

F

4

50

Parse tree

The structure of the tree encodes the
order of operation

It's clear that we have to evaluate the
4 * 50 before we can add to the 3

E

E + T

T

F

3

T * F

F

4

50

A convenient shorthand

It's often useful to say that a particular terminal or nonterminal can appear 0 or
more times 

A → xA | !  

where x is either a terminal or nonterminal and ! represents the empty word

Similarly, it's often useful to say that a particular terminal or nonterminal can
appear 1 or more times 
A → xA | x

We write x* and x+ as a shorthand for these constructs

‣ Note: In CS, we often use * to mean zero-or-more and + to mean one-or-more

Why do we care (in 275)?

We're going to specify a grammar for MiniScheme

We'll use this to

‣ specify what needs to be implemented in each part

‣ a guide for how MiniScheme should be parsed

There's a strong connection between grammars and parsing which we won't
explore in this course

A full grammar for Minischeme

EXP → number

| symbol

| (if EXP EXP EXP)

| (let (LET-BINDINGS) EXP)

| (letrec (LET-BINDINGS) EXP)

| (lambda (PARAMS) EXP)

| (set! symbol EXP)

| (begin EXP*)

| (EXP+)

LET-BINDINGS → LET-BINDING*

LET-BINDING → [symbol EXP]

PARAMS → symbol*

Can 
(if (if 0 1 2)  
 (if 3 4 5)  
 (if x y z))  

be generated by the grammar for
MiniScheme?

A. Yes

B. No. (if …) cannot appear as the
first expression of another if

C. No. (if …) cannot appear as the
"then" or "else" expressions in
another if

D. No. x, y, and z aren't defined
31

EXP → number

| symbol

| (if EXP EXP EXP)

| (let (LET-BINDINGS) EXP)

| (letrec (LET-BINDINGS) EXP)
| (lambda (PARAMS) EXP)

| (set! symbol EXP)

| (begin EXP*)

| (EXP+)

LET-BINDINGS → LET-BINDING*

LET-BINDING → [symbol EXP]

PARAMS → symbol*

Syntactically valid but semantically invalid

Consider the invalid Scheme program  

(let ([x 5]  
 [y 32])  
 (+ z 2))

This is syntactically valid (i.e., it's a valid string generated by the MiniScheme
grammar) but semantically meaningless as we don't have a binding for the
identifier z

